Abstract

Hip perforation is a major complication in proximal femoral nailing. For biaxial nails, knowledge of their biomechanics is limited. Besides re-evaluation of accepted risk factors like the tip-apex distance (TAD), we analysed the influence of anti-rotational pin length. We compared 22 hip perforation cases to 50 randomly chosen controls. TAD, lag-screw position, angle between lag-screw and femoral neck axis, lag-screw gliding capacity, displacement and anti-rotational pin length were investigated. Hip perforation was associated with a higher angle of deviation between lag-screw and femoral neck axis (p = 0.001), a lower telescoping capacity of the lag screw (p = 0.02), and higher TAD (p = 0.048). If the anti-rotational pin exceeded a line connecting the tip of the nail and the lag screw (NS line), hip perforation incidence was increased (p = 0.009). Inadequate pin length resulted in an odds ratio of 10.8 for hip perforation (p = 0.001). In biaxial nails anti-rotational element positioning is underestimated, however, crucial.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.