Abstract

Microfluidic technology has aroused wide applications, including analytical science, diagnostic technology, and micro-/nanofabrication. However, bubbles in microfluidic channels always bring out adverse impacts such as cell damage and device malfunction. To prevent bubble formation, numerical simulation and experiments were integrated to reveal the effect of the factors including the internal structure of the channel, internal wettability, and liquid flow rate. On one hand, the simulation results reveal that bubble formation can be prevented by these mentioned factors, the weight of which can be provided by a logistic regression model. In addition, the raised equilibrium equations can efficiently explain the influence of these factors on bubble prevention. On the other hand, the validity of the simulation was further verified by the prevention of bubbles in the water-flowing microchannels. Therefore, this work provides a promising strategy to prevent bubble formation in microchannels, which has wide applications in microfluidic systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call