Abstract

Microfluidic technology has aroused wide applications, including analytical science, diagnostic technology, and micro-/nanofabrication. However, bubbles in microfluidic channels always bring out adverse impacts such as cell damage and device malfunction. To prevent bubble formation, numerical simulation and experiments were integrated to reveal the effect of the factors including the internal structure of the channel, internal wettability, and liquid flow rate. On one hand, the simulation results reveal that bubble formation can be prevented by these mentioned factors, the weight of which can be provided by a logistic regression model. In addition, the raised equilibrium equations can efficiently explain the influence of these factors on bubble prevention. On the other hand, the validity of the simulation was further verified by the prevention of bubbles in the water-flowing microchannels. Therefore, this work provides a promising strategy to prevent bubble formation in microchannels, which has wide applications in microfluidic systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.