Abstract

The orientation of satellite images is a necessary operation for the correct geometric use of satellite images whether they are used individually to obtain an orthophoto or as stereocouples to extract three-dimensional information. The orientation allows us to reconstruct the correct position on the ground of the single pixels that form the image, which normally can be performed using certain functions of commercial software customised for each specific satellite. These functions read the metadata parameters provided by the satellite operator and use them to correctly orient the images. Unfortunately, these parameters have not been standardised and various satellites report them according to variable conventions, so new satellites or those that are not widely used cannot be oriented automatically. The PRISMA satellite launched by the Italian Space Agency (ASI) releases free hyperspectral and panchromatic images with metric resolution, but there is not yet a standardised procedure for orienting its images and this limits its usability. This paper reports on the first experimentation of orientation and orthorectification of PRISMA (PRecursore IperSpettrale della Missione Applicativa) images carried out using the three most widely used models, namely the rigorous, the Rational Polynomial Coefficients (RPC) and the Rational Polynomial Functions (RPF) tools. The results obtained by interpreting the parameters and making them suitable for use in standard procedures have made it possible to obtain results with an accuracy equal to the maximum resolution of panchromatic images (5 m), thus making it possible to achieve the highest level of geometric accuracy that can be extracted from the images themselves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call