Abstract
Network meta-analysis is a popular method to synthesize the information obtained in a systematic review of studies (e.g., randomized clinical trials) involving subsets of multiple treatments of interest. The dominant method of analysis employs within-study information on treatment contrasts and integrates this over a network of studies. One advantage of this approach is that all inference is protected by within-study randomization. By contrast, arm-based analyses have been criticized in the past because they may also recover inter-study information when studies are modeled as random, which is the dominant practice, hence violating the principle of concurrent control, requiring treated individuals to only be compared directly with randomized controls. This issue arises regardless of whether analysis is implemented within a frequentist or a Bayesian framework. Here, we argue that recovery of inter-study information can be prevented in an arm-based analysis by adding a fixed study main effect. This simple device means that it is possible to honor the principle of concurrent control in a two-way analysis-of-variance approach that is very easy to implement using generalized linear mixed model procedures and hence may be particularly welcome to those not well versed in the more intricate coding required for a contrast-based analysis.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.