Abstract

This paper proposes a framework to evaluate the network vulnerability of cities to wildfires. Three cities are selected from the California Public Utilities Commission (CPUC), U.S., fire-threat regions: Orinda, Paradise, and Atascadero. For each city, four different network connectivity measures are calculated, and agent-based evacuation simulations are performed by the Monte Carlo method. In the simulations, the number of isolated vehicles and evacuation time estimates are measured for the following scenarios: (i) no wildfire case with original network; and (ii) wildfire cases with randomly damaged networks that are reduced by 1%, 3%, 5%, 7%, and 10% from the original network. A city-to-city comparison is conducted in relation to network connectivity measures and evacuation simulation results. It is shown that Paradise has the worst network connectivity, and the simulation results reveal that Paradise also has the most sensitive network in relation to random roadway closures caused by wildfire propagation. Thus, among the three cities, Paradise has the most vulnerable network to wildfires as determined through the two analysis results concerning the worst network measures and the simulation results. It is expected that the proposed analysis framework can be generally applied to any city located in a fire-threat region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call