Abstract

Solutions to optimal input design problems for system identification are sometimes believed to be sensitive to the underlying assumptions. For example, a wide class of problems can be solved with sinusoidal inputs with the same number of excitation frequencies (over the frequency range ) as the number of model parameters. The order of the true system is in many cases unknown and, hence, so is the required number of frequencies in the input. In this contribution we characterize when and how the input spectrum can be chosen so that the (asymptotic) variance error of a scalar function of the model parameters becomes independent of the order of the true system. A connection between these robust designs and the solutions of certain optimal input design problems is also made. Furthermore, we show that there are circumstances when using this type of input allows some model properties to be estimated consistently even when the model order is lower than the order of the true system. The results are derived under the assumptions of causal linear time invariant systems operating in open loop and excited by an input signal having a rational spectral factor with all poles and zeros strictly inside the unit circle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.