Abstract
A compound reported earlier (Polyhedron 1989, 8, 2339) as (Bu(n)()(4)N)(2)H(2)[Mo(2)[Mo(CO)(4)(PhPO(2))(2)](2)] has been reexamined. We find that the hydrogen atoms in this formula are not present. Therefore, the complex must be considered as having a central triply bonded Mo(2)(6+) unit, instead of a quadruply bonded Mo(2)(4+) unit. Our conclusion is based on a variety of experimental evidence, including X-ray crystal structures of four crystal forms, as well as the neutron crystal structure of one. This explains the relatively long Mo-Mo bond lengths found in the range 2.1874(7)-2.2225(7) A and the absence of a delta --> delta transition in the visible spectrum. From electrochemistry we also find that the diphosphonate ligand has such an exceptional ability to stabilize higher oxidation states that even common solvents such as CH(2)Cl(2) and C(2)H(5)OH readily oxidize the Mo(2)(4+) unit that is introduced from the Mo(2)(O(2)CCH(3))(4) or [Mo(2)(O(2)CCH(3))(2)(NCCH(3))(6)](BF(4))(2) employed in the preparation. The only chemically reversible wave at E(1/2) = -1.54 V vs Ag/AgCl corresponds to the reduction process Mo(2)(6+) --> Mo(2)(5+).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.