Abstract

The beam from a laser resonator is determined by the optical elements it contains. Most commonly, these consist of two spherical mirrors, but phase- and amplitude-modulating elements can also be included to produce custom beams. For every custom beam new optics are required, and the resonator must be realigned, a process which can take several hours to days. The digital laser [1] is an innovation which allows the laser beam produced by a laser to be dynamically controlled by a computer. Essentially, one of the resonator mirrors is replaced by a spatial light modulator (SLM), which is a computercontrolled, pixellated, liquid-crystal device. While the concept is the device is simple, the implementation revealed subtle properties of spatial light modulators and the liquid crystals contained in them. These properties had to be well understood before their undesirable characteristics could be overcome, allowing the laser to function as conceived in the design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.