Abstract
Although there is much support for the punishment system as a sophisticated approach to resolving social dilemmas, more than a few researchers have also pointed out the limitations of such an approach. Second-order free riding is a serious issue facing the punishment system. Various pioneering works have suggested that an anti-social behavior or noise stemming from a mutation may, surprisingly, be helpful for avoiding second-order freeloaders. In this work, we show through mathematical analysis and an agent-based simulation of a model extending the meta-norms game that the coercive introduction of a small number of non-cooperators can maintain a cooperative regime robustly. This paradoxical idea was inspired by the effect of a vaccine, which is a weakened pathogen injected into a human body to create antibodies and ward off infection by that pathogen. Our expectation is that the coercive introduction of a few defectors, i.e., a social vaccine, will help maintain a highly cooperative regime because it will ensure that the punishment system works.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica A: Statistical Mechanics and its Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.