Abstract

It has long been argued that cell cycle regulators such as cyclins, cyclin-dependent kinases and their inhibitors affect the fate of neuronal progenitor cells. Recently, we identified that cyclin D2, which localizes at the basal tip of the radial glial cell (i.e., the neural progenitor in the developing neocortex), functions to give differential cell fates to its daughter cells just after cell division. This basally biased localization is due to transportation of cyclin D2 mRNA via its unique cis-regulatory sequence and local translation into cyclin D2 protein at the basal endfoot. During division of the neural progenitor cells, cyclin D2 protein is inherited by the daughter cell that retain the basal process, resulting in asymmetric distribution of cyclin D2 protein between the two daughter cells. Cyclin D2 is similarly localized in the human fetal cortical primordium, suggesting a common mechanism for the maintenance of neural progenitors and a possible scenario in evolution of primate brains. Here we introduce our recent findings and discuss how cyclin D2 functions in mammalian brain development and evolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.