Abstract

Glycolytic flux may increase over 100 times in skeletal muscle during rest-to-work transition, whereas glycolytic metabolite concentrations remain relatively constant. This constancy cannot be explained by an identical direct activation of all glycolytic enzymes because the concentrations of ATP, ADP, AMP, P(i), NADH and NAD+, modulators of the activity of different glycolytic enzymes, change. It is demonstrated in the present in silico study that a perfect homeostasis of glycolytic metabolite concentrations can be achieved if glycolysis is divided into appropriate blocks of enzymes that are directly activated to a different extent in order to compensate the effect of the modulators.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call