Abstract

The purpose of this study is to improve the solubility and dissolution of a poorly soluble drug, Irbesartan, using solid dispersion techniques. For that purpose, different polymers such as Soluplus®, Kollidon® VA 64, Kolliphor® P 407, and Polyinylpyrrolidone (PVP-K30) were used as carriers at different concentrations to prepare solid dispersion formulations through the solvent evaporation method. In order to prepare binary dispersion formulations, Soluplus® and Kollidon® VA 64 were used at drug: polymer ratios of 1:1, 1:2, 1:3, and 1:4 (w/w). Saturation solubility of the drug in the presence of used carriers was performed to investigate the quantitative increase in solubility. Dissolution studies were performed to explore the drug release behavior from the prepared dispersions. Additionally, the characterization of the prepared formulations was carried out by performing DSC, SEM, XRD, and FTIR studies. The results revealed that among binary systems, K4 formulation (Drug: Kollidon® VA 64 at ratio of 1:4 w/w) exhibited optimal performance in terms of increased solubility, drug release, and other investigated parameters. Furthermore, ternary dispersion formulations of the optimized binary formulation were prepared with two more polymers, Kolliphor® P 407 and Polyvinylpyrrolidone (PVP-K30), at (Drug: Kollidon® VA 64:ternary polymer) ratios of 1:4:1, 1:4:2, and 1:4:3 (w/w). The results showed that KPVP (TD3) exhibited the highest increase in solubility, as well as dissolution rate, among ternary solid dispersion formulations. Results of solubility enhancement by ternary solid dispersion formulations were also supported by FTIR, DSC, XRD, and SEM analysis. Conclusively, it was found that the ternary solid dispersion-based systems were more effective compared to the binary combinations in improving solubility as well as dissolution of a poorly soluble drug (Irbesartan).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.