Abstract
Three-dimensional electron diffraction (3D ED) has been used for ab initio structure determination of various types of nanocrystals, such as metal-organic frameworks (MOFs), zeolites, metal oxides and organic crystals. These crystals are often obtained as polycrystalline powders, which are too small for single-crystal X-ray diffraction (SCXRD). While it is now possible to obtain accurate atomic positions of nanocrystals by adopting kinematical refinement against 3D ED data, most new structures are refined with isotropic displacement parameters (U eq), which limits the detection of possible structure disorders and atomic motions. Anisotropic displacement parameters (ADPs, Uij ) obtained by anisotropic structure refinement, on the other hand, provide information about the average displacements of atoms from their mean positions in a crystal, which can provide insights with respect to displacive disorder and flexibility. Although ADPs have been obtained from some 3D ED studies of MOFs, they are seldom mentioned or discussed in detail. We report here a detailed study and interpretation of structure models refined anisotropically against 3D ED data. Three MOF samples with different structural complexity and symmetry, namely ZIF-EC1, MIL-140C and Ga(OH)(1,4-ndc) (1,4-ndcH2 is naphthalene-1,4-dicarboxylic acid), were chosen for the studies. We compare the ADPs refined against individual data sets and how they are affected by different data-merging strategies. Based on our results and analysis, we propose strategies for obtaining accurate structure models with interpretable ADPs based on kinematical refinement against 3D ED data. The ADPs of the obtained structure models provide clear and unambiguous information about linker motions in the MOFs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.