Abstract
The method of separation of variables applied to the natural Hamilton–Jacobi equation $${\frac{1}{2}}$$ ∑(∂u/∂q i )2+V(q)=E consists of finding new curvilinear coordinates x i (q) in which the transformed equation admits a complete separated solution u(x)=∑u (i)(x i ;α). For a potential V(q) given in Cartesian coordinates, the main difficulty is to decide if such a transformation x(q) exists and to determine it explicitly. Surprisingly, this nonlinear problem has a complete algorithmic solution, which we present here. It is based on recursive use of the Bertrand–Darboux equations, which are linear second order partial differential equations with undetermined coefficients. The result applies to the Helmholtz (stationary Schrodinger) equation as well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.