Abstract
Consider two sequences of bounded random variables, a value and a timing process, that satisfy the large deviation principle (LDP) with rate function J(⋅,⋅) and whose cumulative process satisfies the LDP with rate function I(⋅). Under mixing conditions, an LDP for estimates of I constructed by transforming an estimate of J is proved. For the case of a cumulative renewal process it is demonstrated that this approach is favourable to a more direct method, as it ensures that the laws of the estimates converge weakly to a Dirac measure at I.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.