Abstract

Quantum machine learning is where nowadays machine learning (ML) meets quantum information science. In order to implement this new paradigm for novel quantum technologies, we still need a much deeper understanding of its underlying mechanisms, before proposing new algorithms to feasibly address real problems. In this context, quantum generative adversarial learning is a promising strategy to use quantum devices for quantum estimation or generative ML tasks. However, the convergence behaviours of its training process, which is crucial for its practical implementation on quantum processors, have not been investigated in detail yet. Indeed here we show how different training problems may occur during the optimization process, such as the emergence of limit cycles. The latter may remarkably extend the convergence time in the scenario of mixed quantum states playing a crucial role in the already available noisy intermediate scale quantum devices. Then, we propose new strategies to achieve a faster convergence in any operating regime. Our results pave the way for new experimental demonstrations of such hybrid classical-quantum protocols allowing to evaluate the potential advantages over their classical counterparts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.