Abstract

ABSTRACT This report describes the implementation of a laboratory exercise for an advanced biochemistry or enzyme kinetics class at the undergraduate or graduate level, designed to improve understanding of protein conformational changes associated with the binding of a ligand. Students measure the fluorescence changes induced by the conformational transition of a glycoprotein (the Na,K-ATPase) upon addition of different ligands (Pi and BeF3 −) and analyse the results in order to determine the mechanism of the process. The results show that Pi and BeF3 − present opposite effects on the observed rate constants (kobs ) with ligand concentration: kobs decreases with [Pi] and increases with [BeF3 −]. This observation, together with the frequently used assumption that binding occurs under rapid equilibrium, led to propose different models for ligand-induced conformational transitions: a conformational selection for Pi and an induced fit for BeF3 −. In this paper, we show that if the rapid-equilibrium approximation for ligand binding is not assumed, a conformational selection mechanism can account for the effects of both ligands. This active-learning exercise serves as the basis for discussing the consequences of not being extremely cautious when invoking approximations about not-very-well-known systems and the importance of a correct understanding of models assigned to chemical processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.