Abstract
Viruses have shaped human history through devastating infections. In addition, virus infection may be responsible for up to 15% of cancer deaths [1]. Nevertheless, certain viruses can be our “friends.” At the end of the 18th century, Edward Jenner used cowpox to protect humans against infection with a lethal pathogen, smallpox. Based on the effectiveness of this “vaccination” process, in the 1960s, the World Health Organization mounted a global vaccination campaign that resulted in the eradication of smallpox [2]. In the mid-20th century, the principle of virus attenuation through adaptation to unnatural hosts was extended to cultured cells: cells from different species were used to select viruses with multiple mutations, reducing replication speed and allowing the immune system to control viral infection. Based on such a “live-attenuated” vaccine, global eradication of another viral disease, rinderpest, was recently achieved [3]. Other global vaccination campaigns, including those against polio and measles, are progressing. In addition, subunit vaccines are proving to be effective against virus-induced cancers, preventing hepatitis B virus–induced hepatocellular carcinoma and human papilloma virus–induced cervical cancer [2, 4]. A new frontier is to develop viruses into anticancer weapons. Many cancers remain incurable despite recent advances in radio-, chemo-, and immunotherapy. Based on their preferential replication in tumor cells, viruses from nine families have progressed to clinical trials of oncolysis: DNA viruses include Adenoviridae, Herpesviridae, Parvoviridae, and Poxviridae and RNA viruses Paramyxoviridae, Picornaviridae, Reoviridae, Retroviridae, and Rhabdoviridae [5, 6]. Recently, a genetically modified herpes simplex virus 1–based oncolytic vector, named talimogene laherparepvec (T-VEC), was approved as cancer therapeutic in the United States and Europe [7]. What are the mechanisms supporting cancer therapy with viruses, and how can oncolytic virotherapy be improved?
Highlights
Viruses have shaped human history through devastating infections
Based on the effectiveness of this “vaccination” process, in the 1960s, the World Health Organization mounted a global vaccination campaign that resulted in the eradication of smallpox [2]
The vaccine lineage–based measles virus (MeV) platform we have developed can enter many cell types through the ubiquitously expressed protein CD46, while future clinical trials may be based on viruses with targeted tropism
Summary
Citation: Cattaneo R, Russell SJ (2017) How to develop viruses into anticancer weapons. PLoS Pathog 13(3): e1006190. doi:10.1371/journal. ppat.1006190 Funding: The authors received no specific funding for writing this review article. Competing interests: SJR is a scientific cofounder, equity stakeholder, board member and serves as CEO at Vyriad, a company that is developing oncolytic measles viruses for cancer therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.