Abstract
BackgroundTraumatic brain injury (TBI) poses a significant challenge to healthcare providers, necessitating meticulous management of hemodynamic parameters to optimize patient outcomes. This article delves into the critical task of defining and meeting continuous arterial blood pressure (ABP) and cerebral perfusion pressure (CPP) targets in the context of severe TBI in neurocritical care settings.MethodsWe narratively reviewed existing literature, clinical guidelines, and emerging technologies to propose a comprehensive approach that integrates real-time monitoring, individualized cerebral perfusion target setting, and dynamic interventions.ResultsOur findings emphasize the need for personalized hemodynamic management, considering the heterogeneity of patients with TBI and the evolving nature of their condition. We describe the latest advancements in monitoring technologies, such as autoregulation-guided ABP/CPP treatment, which enable a more nuanced understanding of cerebral perfusion dynamics. By incorporating these tools into a proactive monitoring strategy, clinicians can tailor interventions to optimize ABP/CPP and mitigate secondary brain injury.DiscussionChallenges in this field include the lack of standardized protocols for interpreting multimodal neuromonitoring data, potential variability in clinical decision-making, understanding the role of cardiac output, and the need for specialized expertise and customized software to have individualized ABP/CPP targets regularly available. The patient outcome benefit of monitoring-guided ABP/CPP target definitions still needs to be proven in patients with TBI.ConclusionsWe recommend that the TBI community take proactive steps to translate the potential benefits of personalized ABP/CPP targets, which have been implemented in certain centers, into a standardized and clinically validated reality through randomized controlled trials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.