Abstract

We present a general, systematic, and efficient method for decomposing any given exponential operator of bosonic mode operators, describing an arbitrary multimode Hamiltonian evolution, into a set of universal unitary gates. Although our approach is mainly oriented towards continuous-variable quantum computation, it may be used more generally whenever quantum states are to be transformed deterministically, e.g., in quantum control, discrete-variable quantum computation, or Hamiltonian simulation. We illustrate our scheme by presenting decompositions for various nonlinear Hamiltonians including quartic Kerr interactions. Finally, we conclude with two potential experiments utilizing offline-prepared optical cubic states and homodyne detections, in which quantum information is processed optically or in an atomic memory using quadratic light-atom interactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.