Abstract

Currently, finding ways to effectively control the spread of Omicron in regions with low vaccination rates is an urgent issue. In this study, we use a district-level model for predicting the COVID-19 symptom onset risk to explore and control the whole process of spread of Omicron in South Africa at a finer spatial scale. We found that in the early stage of the accelerated spread, Omicron spreads rapidly from the districts at the center of human mobility to other important districts of the human mobility network and its peripheral districts. In the subsequent diffusion-contraction stage, Omicron rapidly spreads to districts with low human mobility and then mainly contracts to districts with the highest human mobility. We found that increasing daily vaccination rates 10 times mainly reduced the symptom onset risk in remote areas with low human mobility. Implementing Alert Level 5 in the three districts at the epicenter, and Alert Level 1 in the remaining 49 districts, the spatial spread related to human mobility was effectively restricted, and the daily onset risk in districts with high human mobility also decreased by 20-80%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.