Abstract
We formulate a method allowing us to confirm or exclude the alternative models of material properties at some definite confidence level in experiments on measuring the Casimir force. The method is based on the consideration of differences between the theoretical and mean measured quantities and the confidence intervals for these differences found at sufficiently high or low confidence probabilities. The developed method is applied to the data of four recent experiments on measuring the gradient of the Casimir force by means of a dynamic atomic force microscope. It is shown that in experiments with Au–Au and Ni–Ni test bodies, where the Drude model approach is excluded at a 95% confidence level, the plasma model approach agrees with the data at higher than 90% confidence. In experiments using an Au sphere interacting with either a Ni plate or a graphene-coated substrate, the measurement data agree with the common prediction of the Drude and plasma model approaches and theory using the polarization tensor at 90% and 80% confidence levels, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.