Abstract

We formulate a method allowing us to confirm or exclude the alternative models of material properties at some definite confidence level in experiments on measuring the Casimir force. The method is based on the consideration of differences between the theoretical and mean measured quantities and the confidence intervals for these differences found at sufficiently high or low confidence probabilities. The developed method is applied to the data of four recent experiments on measuring the gradient of the Casimir force by means of a dynamic atomic force microscope. It is shown that in experiments with Au–Au and Ni–Ni test bodies, where the Drude model approach is excluded at a 95% confidence level, the plasma model approach agrees with the data at higher than 90% confidence. In experiments using an Au sphere interacting with either a Ni plate or a graphene-coated substrate, the measurement data agree with the common prediction of the Drude and plasma model approaches and theory using the polarization tensor at 90% and 80% confidence levels, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call