Abstract
Atomistic simulation has been a powerful study tool in mechanics research, but how to objectively compute the atomic stress equivalent to Cauchy stress is still controversial, especially on the velocity-related part in the virial stress definition. In this paper, by strictly following the classical definition of the Cauchy stress for continuum medium, the fundamental Lagrangian atomic stress is proposed and can be used to obtain the correct Cauchy stress under any circumstances. Furthermore, the Lagrangian virial stress is proposed, which is still in virial form but does not include velocities to avoid controversial velocity treatments. It is also found that the widely used classical virial stress is actually the Eulerian virial stress, which includes the velocities of atoms, and is valid only when the impulse-momentum theorem is applicable to estimate the internal forces. However this requirement for the Eulerian atomic stress can not always be met in practical cases, such as the material volume element in rotation and the examples presented in this paper, but the proposed Lagrangian atomic stress can avoid these velocity-related nonobjectivities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Computational and Theoretical Nanoscience
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.