Abstract

We construct a "hyperparameter matrix" statistical method for performing the joint analyses of multiple correlated astronomical data sets, in which the weights of data sets are determined by their own statistical properties. This method is a generalization of the hyperparameter method constructed by Lahav et al. (2000) and Hobson, Bridle, & Lahav (2002) which was designed to combine independent data sets. The advantage of our method is to treat correlations between multiple data sets and gives appropriate relevant weights of multiple data sets with mutual correlations. We define a new "element-wise" product, which greatly simplifies the likelihood function with hyperparameter matrix. We rigorously prove the simplified formula of the joint likelihood and show that it recovers the original hyperparameter method in the limit of no covariance between data sets. We then illustrate the method by applying it to a demonstrative toy model of fitting a straight line to two sets of data. We show that the hyperparameter matrix method can detect unaccounted systematic errors or underestimated errors in the data sets. Additionally, the ratio of Bayes' factors provides a distinct indicator of the necessity of including hyperparameters. Our example shows that the likelihood we construct for joint analyses of correlated data sets can be widely applied to many astrophysical systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.