Abstract
Adult stem cells play a key role in tissue regeneration and cancer. To translate findings from stem cell biology into clinics, we require a quantitative characterization of stem cell dynamics in vivo. This review explores how mathematical models can help to characterize stem cell behavior in health and disease. Mathematical models significantly contribute to quantification of stem cell traits such as proliferation, self-renewal, and quiescence. They provide insights into the role of systemic and micro-environmental feedback loops during regeneration and cancer. Computer simulations allow linking stem cell properties to tumor composition, clinical course, and drug response. Therefore, models are helpful in personalizing treatments and predicting patient survival. Mathematical models coupled with tools of parameter estimation and model selection provide quantitative insights into stem cell properties and their regulation. They help to understand experimentally inaccessible processes occurring in regeneration, aging, and cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.