Abstract

In the search for more efficient and less environmentally harmful cooling technologies, the field of magnetocalorics is considered a promising alternative. To generate cooling spans, rotating permanent magnet assemblies are used to cyclically magnetize and demagnetize magnetocaloric materials, which change their temperature under the application of a magnetic field. In this work, an axial rotary permanent magnet assembly, aimed for commercialization, is computationally designed using topology and shape optimization. This is efficiently facilitated in an isogeometric analysis framework, where harmonic mortaring is applied to couple the rotating rotor–stator system of the multipatch model. Inner, outer and co-rotating assemblies are compared and optimized designs for different magnet masses are determined. These simulations are used to homogenize the magnetic flux density in the magnetocaloric material. The resulting torque is analyzed for different geometric parameters. Additionally, the influence of anisotropy in the active magnetic regenerators is studied in order to guide the magnetic flux. Different examples are analyzed and classified to find an optimal magnet assembly for magnetocaloric cooling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call