Abstract

Waste water treatment plants (WWTP) have attracted attention in numerous studies in their impact on receiving surface waters because of the presence of varied contaminants in their effluents. This study investigated the relevance of particle-bound contaminants using suspended particulate matter (SPM) to monitor the temporal variability of the impact of a WWTP discharge in a chalk stream (Loue River) in France. We performed five sampling campaigns of SPM and sediment during a year at different seasons and analyzed polycyclic aromatic hydrocarbons (PAHs) and phosphorus in both matrix. PAH contents in SPM ranged from 675 to 3709 μg kg−1 dry weight (dw) and in sediment from 668 to 7712 μg kg−1 dw. Levels of phosphorus ranged from 364 to 1380 mg kg−1 dw in SPM and from 315 to 523 mg kg−1 dw in sediment. The WWTP increased significantly PAH levels in SPM to the Loue River. However, our results did not allow to evidence significant differences on particulate phosphorus concentration in SPM. Nevertheless, we evidenced significant seasonal variations of PAH and phosphorus concentrations in SPM. Besides sediment sampling, the collection of SPM allowed to monitor changes in contamination from the WWTP and highlighted impact of WWTP on PAH concentrations and changes of PAH and phosphorus concentrations over time. Contamination of SPM of the Loue River was driven by mixed inputs from point source like WWTP and from diffuse sources in the catchment like runoff from impervious and pervious surfaces. Combining monitoring of SPM and sediment proved to be an improved approach to assess contamination of local and diffuse sources in chalk streams.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call