Abstract
Numerical methods are widely used in seismic exploration to simulate wave propagation; however, the algorithms are based on various assumptions. The accuracy of numerical simulations is of particular interest in the case of realistic geologic setups. The direct comparison of numerical results can have limitations, and an alternative approach can be the comparison of synthetic results with experimental data, obtained for a small-scale physical model in laboratory conditions. Laboratory experiments are repeatable and provide high-quality data for a known configuration. We have developed a possible workflow to adapt the numerical simulations and the laboratory experiments to each other, such that the two can be easily compared with high accuracy. The model is immersed in a water tank, and a conventional pulse-echo technique is used to collect the reflection data in zero-offset and offset configurations. We use a spectral-element method for the numerical modeling. The model geometry is implemented using a nonstructured mesh, and the computational cost can be optimized using larger elements and higher-order basis functions. The real source transducer characteristics are implemented based on a new approach: laboratory characterization of the impulse response, followed by an inversion step to obtain a numerically equivalent source. The comparison of the zero-offset synthetic and laboratory results reveals an excellent fit in terms of arrival time, phase, and amplitude. Minor amplitude mismatches may be attributed to the noise recorded in the laboratory data and to the possible inaccuracy of the proposed source implementation. Comparison of the simulated and laboratory offset traces also exhibits a good fit in general, but with significantly less accuracy for some arrivals than in the zero-offset case. This can be mainly attributed to the inaccuracies of the transducer positions during the laboratory measurements combined with the strong topography of the model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.