Abstract

We describe a series of numerical experiments that measure the average generalization capability of neural networks trained on a variety of simple functions. These experiments are designed to test the relationship between average generalization performance and the worst-case bounds obtained from formal learning theory using the Vapnik-Chervonenkis (VC) dimension (Blumer et al. 1989; Haussler et al. 1990). Recent statistical learning theories (Tishby et al. 1989; Schwartz et al. 1990) suggest that surpassing these bounds might be possible if the spectrum of possible generalizations has a “gap” near perfect performance. We indeed find that, in some cases, the average generalization is significantly better than the VC bound: the approach to perfect performance is exponential in the number of examples m, rather than the 1/m result of the bound. However, in these cases, we have not found evidence of the gap predicted by the above statistical theories. In other cases, we do find the 1/m behavior of the VC bound, and in these cases, the numerical prefactor is closely related to the prefactor contained in the bound.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.