Abstract

Capturing components of the weather that drive environment-animal interactions is a perennial problem in ecology. Identifying biologically significant elements of weather conditions in sensible statistics suitable for analysis of life history variation and population dynamics is central. Meteorological variables such as temperature, precipitation, and wind modulate rates of heat loss in animals, but analysis of their effects on endothermic species is complicated by the fact that their influence on energy balance is not invariably linear, even across the thermoneutral range. Rather, the thermal load imposed by a given set of weather conditions is a function of organisms' metabolic requirement, which, crucially, may vary spontaneously both seasonally and across different life phases. We propose that the endogenous component of variation in metabolic demand introduces a temporal dimension and that, as a consequence, the specific effect of meteorological variables on energy balance and attendant life history parameters is a function of the timing of weather events with respect to the organism's metabolic rhythm(s). To test this, we examined how a spontaneous increase in metabolic demand influenced the effect of weather on early development in a large mammal. Specifically, we examined interaction between the exponential rise in the energy requirements of pregnancy and depth of snow, which restricts dams' access to forage, on the body mass of reindeer calves (Rangifer tarandus) at weaning. As expected, we detected a significant temporal component: the specific negative effect of snow on weaning mass was not constant, but increased across pregnancy. The life history response was therefore better predicted by interaction between the magnitude and the timing of weather events than by their magnitude alone. To our knowledge, this is the first demonstration of the influence of an endogenous metabolic dynamic on the impact of weather on a life history trait in a free-living mammal. Evaluating weather variables with respect to endogenous variation in metabolic demand adds biological realism and is likely to improve understanding of the influence of environmental variation on life history traits in many ecological contexts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call