Abstract

This work aims to explore the intrinsic properties of two-dimensional (2D)-layered perovskites, (PEA)2PbI4(N) and Cs2PbI4(N), and demonstrating how their structures and properties vary with N. The results reveal that both (PEA)2PbI4(N) and Cs2PbI4(N) are direct bandgap semiconductors, their band/optical gaps and exciton-binding energies vary linearly with 1/N at N ≥ 3, and the effective masses slowly vary with N. Compared to the bulk phases, the structures of ultrathin (PEA)2PbI4(N) are more flexible and deformable than Cs2PbI4(N). The giant spin-coupling effect greatly decreases the band gaps of both 2D materials; however, it only induces the spin splitting in the bands of (PEA)2PbI4(N). This work suggests that the ultrathin 2D materials can be a potential candidate for nano-optoelectronic devices, and that the nanoplates with N ≥ 3 could have similar performances with bulk materials in the carrier migration and exciton separation so that they can be effectively applied in photovoltaic cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.