Abstract

MRS of hyperpolarized (13) C-labeled compounds represents a promising technique for in vivo metabolic studies. However, robust quantification and metabolic modeling are still important areas of investigation. In particular, time and spatial resolution constraints may lead to the analysis of MRS signals with low signal-to-noise ratio (SNR). The relationship between SNR and the precision of quantitative analysis for the evaluation of the in vivo kinetic behavior of metabolites is unknown. In this article, this topic is addressed by Monte Carlo simulations, covering the problem of MRS signal model parameter estimation, with strong emphasis on the peak amplitude and kinetic model parameters. The results of Monte Carlo simulation were confirmed by in vivo experiments on medium-sized animals injected with hyperpolarized [1-(13) C]pyruvate. The results of this study may be useful for the establishment of experimental planning and for the optimization of kinetic model estimation as a function of the SNR value.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.