Abstract
Metal-assisted chemical etching (MACE) is done with different metal species. The resulting silicon nanostructures appear strongly dependent on the choice of metal, but a deeper understanding of the MACE process is still missing. We report here direct evidence that the etching solution composition plays a major role in the chemical stability of the metal catalyst used. We show from an elemental analysis of post-MACE etch baths that dissolved silver is found in the bath with concentrations up to 3 orders of magnitude larger than when gold is used. Furthermore, the dissolved silver content also correlates with the amount of H2O2, either in different initial conditions, or as would be expected from its decomposition over time. We also show that silver dissolution leads to unintended etching elsewhere on the substrate. This species-dependent behavior of the metal catalyst is responsible for the different kinds of control possible over the nanostructures produced with silver- and gold-based MACE.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.