Abstract
The presence of interfaces with nanoscale spacing significantly enhances the strength of materials, but also the rate controlling processes of plastic flow are subject to change. Due to the confined grain volumes, intragranular dislocation-dislocation interactions, the predominant processes at the micrometer scale, are replaced by emission of dislocations from and their subsequent accommodation at the interfaces. Both processes not only depend on the interfacial spacing, but also on the atomistic structure of the interface. Hence, a thorough understanding how these processes are affected by the interface structure is required to predict and improve the behavior of nanomaterials. The present study attempts to rationalize this effect by investigating the thermomechanical behavior of samples consisting of three different interfaces. Pure nickel samples with predominant fractions of low- and high-angle as well as twin boundaries with a similar average spacing around 150 nm are investigated using high temperature nanoindentation strain rate jump tests. Depending on the interface structure, hardness, strain rate sensitivity and apparent activation volumes evolve distinctively different with testing temperature. While in case of high-angle boundaries for all quantities a pronounced thermal dependence is found, the other two interface types behave almost athermal in the same temperature range. These differences can be rationalized based on the different interfacial diffusivity, affecting the predominant process of interfacial stress relaxation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.