Abstract

Neoplastic growth and many of the hallmark properties of cancer are driven by the disruption of molecular networks established during the emergence of multicellularity. Regulatory pathways and molecules that evolved to impose regulatory constraints upon networks established in earlier unicellular organisms enabled greater communication and coordination between the diverse cell types required for multicellularity, but also created liabilities in the form of points of vulnerability in the network that when mutated or dysregulated facilitate the development of cancer. These factors are usually overlooked in genomic analyses of cancer, but understanding where vulnerabilities to cancer lie in the networks of multicellular species would provide important new insights into how core molecular processes and gene regulation change during tumourigenesis. We describe how the evolutionary origins of genes influence their roles in cancer, and how connections formed between unicellular and multicellular genes that act as key regulatory hubs for normal tissue homeostasis can also contribute to malignant transformation when disrupted. Tumours in general are characterised by increased dependence on unicellular processes for survival, and major dysregulation of the control structures imposed on these processes during the evolution of multicellularity. Mounting molecular evidence suggests altered interactions at the interface between unicellular and multicellular genes play key roles in the initiation and progression of cancer. Furthermore, unicellular network regions activated in cancer show high degrees of robustness and plasticity, conferring increased adaptability to tumour cells by supporting effective responses to environmental pressures such as drug exposure. Examining how the links between multicellular and unicellular regions get disrupted in tumours has great potential to identify novel drivers of cancer, and to guide improvements to cancer treatment by identifying more effective therapeutic strategies. Recent successes in targeting unicellular processes by novel compounds underscore the logic of such approaches. Further gains could come from identifying genes at the interface between unicellular and multicellular processes and manipulating the communication between network regions of different evolutionary ages.

Highlights

  • The hallmarks of cancer (Hanahan and Weinberg, 2011) provide an important unifying framework for studies of the molecular drivers of cancer

  • We propose that the shaping of gene regulatory networks during evolution, the evolution of multicellularity from unicellular ancestors, led to unicellular and multicellular genes playing differing roles in cancer and created links within the network structure that are vulnerable to disruption that allow the development of cancer

  • Cancer development is greatly influenced by how the structure of human molecular networks was shaped by past evolutionary processes, but the potential benefits of incorporating evolutionary information are rarely appreciated in genomic studies of cancer

Read more

Summary

Introduction

The hallmarks of cancer (Hanahan and Weinberg, 2011) provide an important unifying framework for studies of the molecular drivers of cancer. Under a general mutual exclusivity framework, the selection for network regions dating back to unicellular ancestors during cancer development would promote loss of multicellular features, which would in turn further increase expression of unicellular genes, creating a feedback loop promoting increasingly malignant states (Figure 2A).

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call