Abstract

Protein disulfides can adopt a wide variety of conformations, each having different energies. Limited experimental data suggest that disulfides adopting a high energy have an enhanced likelihood for reduction, but the exact nature of this relation is not clear. Using a computational approach, we give insight on the conformational dependence of the redox behavior of the disulfide bond, which relates structure to reactivity. The relative energy of different conformations of the diethyl disulfide model system correlates with the disulfide/thiol redox potential E°. Insight in the calculated redox potentials is obtained via quantitative molecular orbital theory, and via the decomposition of E° into a vertical electron affinity and a subsequent reorganization term. We have identified the determinants of the disulfide conformational energies and characterized the barrier to rotation around the disulfide bond. Our findings on the diethyl disulfide model system can be transferred to examples from the Protein Data Base. In conclusion, strained disulfide conformations with a high conformational energy have a large tendency to be reduced. Upon reduction, unfavorable interactions are released. This explains why reorganization effects and not a higher tendency to accept electrons account for the high reduction potential of high-energy disulfides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.