Abstract

ABSTRACT Stellar bars and spiral arms coexist and co-evolve in most disc galaxies in the local Universe. However, the physical nature of this interaction remains a matter of debate. In this work, we present a set of numerical simulations based on isolated galactic models aimed to explore how the bar properties affect the induced spiral structure. We cover a large combination of bar properties, including the bar length, axial ratio, mass, and rotation rate. We use three galactic models describing galaxies with rising, flat, and declining rotation curves. We found that the pitch angle best correlates with the bar pattern speed and the spiral amplitude with the bar quadrupole moment. Our results suggest that galaxies with declining rotation curves are the most efficient forming grand design spiral structure, evidenced by spirals with larger amplitude and pitch angle. We also test the effects of the velocity ellipsoid in a subset of simulations. We found that as we increase the radial anisotropy, spirals increase their pitch angle but become less coherent with smaller amplitude.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.