Abstract

Nematode sperm are amoeboid cells that use a major sperm protein (MSP) cytoskeleton in place of a conventional actin cytoskeleton to power their amoeboid motility. In these simple, specialized cells cytoskeletal dynamics is tightly coupled to locomotion. Studies have capitalized on this feature to explore the key structural properties of MSP and to reconstitute motility both in vivo and in vitro. This review discusses how the mechanistic properties shared by the MSP machinery and actin-based motility systems lead to a "push-pull" mechanism for amoeboid cell motility in which cytoskeletal assembly and disassembly at opposite ends of the lamellipodium are associated with independent forces for protrusion of the leading edge and retraction of the cell body.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call