Abstract

To study the formation of defects in quartz glasses of type KS-4V, KU-1, and Corning 7980 under the action of an electron beam (EB), the induced absorption spectra is decomposed into individual bands (IBs) with maxima at 163.5, 183.5, 213, 225, 244, and 260 nm. In all the glasses, the intensities of most of the IBs saturated at doses around 90 MGy as the EB fluence increased. The steady-state absorption at 260, 213, and 183 nm was a factor of 2–4 less in KS-4V than in KU-1. The intensity of the bands at 163 nm virtually coincided in these glasses and monotonically increased with increasing EB fluence. This indicates an impact mechanism for the throughput of the oxygen-deficient centers responsible for this band.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call