Abstract

Social behavior can have a major impact on the dynamics of infectious disease outbreaks. For animals that live in dense social groups, such as the eusocial insects, pathogens pose an especially large risk because frequent contacts among individuals can allow rapid spread within colonies. While there has been a large body of work examining adaptations to mitigate the spread of infectious disease within social insect colonies, there has been less work on strategies to prevent the introduction of pathogens into colonies in the first place. We develop an agent-based model to examine the effect of territorial behavior on the transmission of infectious diseases between social insect colonies. We find that by preventing the introduction of infected foreign workers into a colony, territoriality can flatten the curve of an epidemic, delaying the introduction of an infectious disease and reducing its maximum prevalence, but only for diseases with moderate to low transmissibility. Our results have implications for understanding how pathogen risk influences the evolution of territorial behavior in social insects and other highly social animals.Significance statementInfectious disease outbreaks can impose a large fitness cost to animals that live in social groups. The frequency and pattern of contacts both within and among groups can have a large impact on the speed and extent of an epidemic. Using an individual-based model, we examined how the exclusion of foreign workers from a territory around the nest influences disease transmission between social insect colonies. We find that territoriality can protect colonies from outbreaks of low to moderately contagious pathogens by delaying the spillover from other colonies and reducing the maximum number of workers who are infected. These results suggest that the relative threat posed by infectious diseases may have played an important role in shaping the diversity of territorial behaviors seen in different social insect species.Supplementary InformationThe online version contains supplementary material available at 10.1007/s00265-021-03095-0.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call