Abstract

Functional connectivity (FC) calculated from task fMRI data better reveals brain-phenotype relationships than rest-based FC, but how tasks have this effect is unknown. In over 700 individuals performing seven tasks, we use psychophysiological interaction (PPI) and predictive modeling analyses to demonstrate that task-induced changes in FC successfully predict phenotype, and these changes are not simply driven by task activation. Activation, however, is useful for prediction only if the in-scanner task is related to the predicted phenotype. To further characterize these predictive FC changes, we develop and apply an inter-subject PPI analysis. We find that moderate, but not high, task-induced consistency of the blood-oxygen-level-dependent (BOLD) signal across individuals is useful for prediction. Together, these findings demonstrate that in-scanner tasks have distributed, phenotypically relevant effects on brain functional organization, and they offer a framework to leverage both task activation and FC to reveal the neural bases of complex human traits, symptoms, and behaviors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call