Abstract

Toxic selenium oxyanions and sulfur species are often jointly present in contaminated waters and soils. This study investigated the effect on kinetics and resulting products for bio-reduction of selenium oxyanions in the presence of biologically produced sulfur resulting from bio-oxidation of sulfide in (bio)gas-desulfurization (bio-S0) and of sulfate. Selenite and selenate (~2 mmol L-1) bio-reduction was studied in batch up to 28 days at 30 oC and pH 7 using lactic acid and a sulfate-reducing sludge, 'Emmtec'. Bio-S0 addition increased the selenite removal rate, but initially slightly decreased selenate reduction rates. Selenite reacted with biologically generated sulfide resulting in selenium-sulfur, which upon further bio-reduction creates a sulfur bio-reduction cycle. Sulfate addition increased the bio-reduction rate for both selenite and sulfate. Bio-S0 or sulfate promoted hexagonal selenium formation, whereas without these, mostly amorphous Se0 resulted. With another inoculum, ‘Eerbeek’, bio-S0 accelerated the selenite reduction rate less than for ‘Emmtec’ because of lower sulfur and higher selenite bio-reduction rates. Bio-S0 addition increased the selenate reduction rate slightly and accelerated hexagonal selenium formation. Hexagonal selenium formation is advantageous because it facilitates separation and recovery and is less mobile and toxic than amorphous Se0. Insights into the interaction between selenium and sulfur bio-reduction are valuable for understanding environmental pathways and considerations regarding remediation and recovery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.