Abstract

Comprehensive knowledge on the role of substrate subsites is a prerequisite to understand the interaction between glycoside hydrolase and its substrate. The present study delineates the role of individual substrate subsites present in ManB-1601 (GH26 endo-mannanase from Bacillus sp.) towards interaction with mannans. Isothermal titration calorimetry of catalytic mutant (E167A/E266A) of ManB-1601 with mannobiose to mannohexose revealed presence of six substrate subsites in ManB-1601. The amino acids present in substrate subsites of ManB-1601 were found to be highly conserved among GH26 endo-mannanases from Bacillus spp. Qualitative substrate binding analysis of subsite mutants by native affinity gel electrophoresis suggested that −3, −2, −1, +1 and + 2 subsites have a major role while, −4 subsite had minor role towards mannan binding. Affinity gels also pointed out the pivotal role of −1 subsite towards glucomannan binding. Quantitative substrate binding analysis using fluorescence titration revealed that −1 and −2 subsite mutants had 27- and 30-fold higher binding affinity (KD) for carob galactomannan when compared with catalytic mutant. The −1 subsite mutant also had highest KD values for glucomannan (13.6-fold) and ivory nut mannan (5-fold) among all mutants. The positive subsites contributed more towards binding with glucomannan (up to 10-fold higher KD) and ivory nut mannan (up to 4.3-fold higher KD) rather than carob galactomannan (up to 4-fold higher KD). Between distal subsites, −3 mutant displayed 10-fold higher KD for both carob galactomannan and glucomannan while, −4 mutant did not show any noticeable change in KD values when compared to catalytic mutant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.