Abstract

The calculation through the supermolecular approach of the hydrogen bond strength EHB between silanol groups at the surface of an ample class of silica-based materials is hindered by the intrinsic difficulty to define the “H-bond free” reference system. We propose, for the first time, to evaluate EHB by adopting the literature empirical correlation relating the Bader local electronic kinetic energy density Gb computed at the H⋅⋅⋅O bond critical point with EHB. Remarkably, EHB for the hydroxylated surfaces of quartz polymorphs correlates with surface formation energy, showing that the surface EHB is responsible of the surface stability. A number of correlations between hydrogen bond features are established, with that between EHB and the enhanced infrared intensity associated to surface hydrogen bond formation, obeying the literature formula semi-quantitatively. The present results are quite general and can be extended to other inorganic surfaces where hydrogen bonds between surface sites are the dominant features.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.