Abstract

The linear independence constraint qualifications (LICQ) plays an important role in the analysis of mathematical programs with complementarity constraints (MPCCs) and is a vital ingredient to convergence analyses of SQP-type or smoothing methods, cf., e.g., Fukushima and Pang (1999), Luo et al. (1996), Scholtes and Stöhr (1999), Scholtes (2001), Stöhr (2000). We will argue in this paper that LICQ is not a particularly stringent assumption for MPCCs. Our arguments are based on an extension of Jongen's (1977) genericity analysis to MPCCs. His definitions of nondegenerate critical points and regular programs extend naturally to MPCCs and his genericity results generalize straightforwardly to MPCCs in standard form. An extension is not as straightforward for MPCCs with the particular structure induced by lower-level stationarity conditions for variational inequalities or optimization problems. We show that LICQ remains a generic property for this class of MPCCs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.