Abstract

Bicyclo[1.1.0]butane (BCB) derivatives are versatile coupling partners, and various reaction modes for their activation and transformation have been proposed. In this work, three BCB-activation modes in Rh-catalyzed BCB transformations that construct diastereoselective α-quaternary β-lactones were investigated by density functional theory calculations. Our results show that, compared with C1-C3 insertion and C-C3 oxidative addition, C2-C3 oxidative addition is more favorable. The whole catalytic cycle involves five main steps: C-H activation, oxidative addition, β-C elimination/reductive elimination, Rh walking, and aldehyde insertion/protonation. Independent gradient model, intrinsic reaction coordinate, distortion-interaction energy, and Laplacian electron-density analyses were carried out to investigate the mode of BCB activation. Our calculation also showed that aldehyde-insertion is the diastereoselectivity determining step, which is controlled by the steric effect between the ligand, methyl group, and aldehyde.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.