Abstract

Proteins tend to bury hydrophobic residues inside their core during the folding process to provide stability to the protein structure and to prevent aggregation. Nevertheless, proteins do expose some 'sticky' hydrophobic residues to the solvent. These residues can play an important functional role, e.g. in protein-protein and membrane interactions. Here, we first investigate how hydrophobic protein surfaces are by providing three measures for surface hydrophobicity: the total hydrophobic surface area, the relative hydrophobic surface area and-using our MolPatch method-the largest hydrophobic patch. Secondly, we analyze how difficult it is to predict these measures from sequence: by adapting solvent accessibility predictions from NetSurfP2.0, we obtain well-performing prediction methods for the THSA and RHSA, while predicting LHP is more challenging. Finally, we analyze implications of exposed hydrophobic surfaces: we show that hydrophobic proteins typically have low expression, suggesting cells avoid an overabundance of sticky proteins. The data underlying this article are available in GitHub at https://github.com/ibivu/hydrophobic_patches. Supplementary data are available at Bioinformatics Advances online.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.