Abstract

The solar radiation pressure model for the sub-satellites RSAT and VSAT in the SELENE project is improved to correct the mean acceleration due to an evolving tip-off of the spin during the life time of satellites. The shape of the satellites is assumed to be a regular octagonal pillar. Solar radiation pressure force components acting on each surface element of the satellite are calculated independently and summed vectorially during a total period of Euler’s free nutation of the satellite to obtain the mean acceleration of the satellite center of mass. The Doppler tracking data reduction process for the RSAT is simulated after incorporating the modified model into the orbit analysis software. Comparing with two other types of solar radiation pressure models, the standard cannonball model and a non tip-off model, it is found that when the tip-off becomes larger than 5°/s, the orbit determination result of using the modified model is better than the results of using other ones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.