Abstract
Organisms use enzymes to ensure a flow of substrates through biosynthetic pathways. How the earliest form of life established biosynthetic networks and prevented hydrolysis of intermediates without enzymes is unclear. Organocatalysts may have played the role of enzymes. Quantitative analysis of reactions of adenosine 5’‐monophosphate and glycine that produce peptides, pyrophosphates, and RNA chains reveals that organocapture by heterocycles gives hydrolytically stabilized intermediates with balanced reactivity. We determined rate constants for 20 reactions in aqueous solutions containing a carbodiimide and measured product formation with cyanamide as a condensing agent. Organocapture favors reactions that are kinetically slow but productive, and networks, over single transformations. Heterocycles can increase the metabolic efficiency more than two‐fold, with up to 0.6 useful bonds per fuel molecule spent, boosting the efficiency of life‐like reaction systems in the absence of enzymes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.