Abstract

The present work investigates a narrow range of secondary dendrite arm spacing (SDAS), in an as‐cast A356 alloy with and without copper (Cu) additions. Cu was added to the base A356 alloy melt to reach the target concentration of 0.5 and 1 wt.%. Samples were selected from 3 different positions within the cast plate, offering 30, 35, and 40 μm SDAS variants. Tensile curves revealed a strong influence between the specimen cutting position and strength, with a pronounced effect in the Cu‐containing alloys. Hardness measurements did not confirm the tensile response; hence, to understand the phenomenon, microstructural features have been investigated in detail. Eutectic silicon (Si) particle equivalent diameter (ED) size decreased from the top (T) to the bottom (B) position of the cast. Eutectic Si particle surface area (A%) was found to be denser at the B as compared to the T and simultaneously in the Cu‐containing alloy as compared to the Cu‐free reference alloy. Backscattered electron (BSE) images were employed to investigate the nature of the Cu‐rich intermetallic phases. In conclusion, electrical conductivity measurements were performed to confirm the trends observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.